91制片糖心vlog玩偶传媒|91传媒天美传媒|亚洲成人久久精品国产|麻豆文化传媒免费欢迎你|91麻豆视频高清|采访麻豆传媒映画拍AV|国产天美传媒国产原创av剧情|91制片厂果冻传了|国产色多多网站|天美传媒欧美av果冻传媒,亚洲精品在线视频,蜜桃影像传媒牛年贺岁,亚洲精品一区在线看

非迭代動態(tài)多故障診斷方法研究

A non-iterative method for dynamic multiple-fault diagnosis

  • 摘要: 由于傳感器噪聲和故障判決規(guī)則的不可靠,故障檢測系統(tǒng)難免出現(xiàn)檢測錯誤。不同的測試之間具有一定的冗余關系,利用這些關系就可以糾正一定的錯誤。基于迭代的動態(tài)多故障診斷(DMFD)算法在系統(tǒng)中有測試錯誤的情況下具有較高的診斷正確率,但當系統(tǒng)規(guī)模較大時,它的迭代過程并不必要,且有時迭代并不能收斂到最優(yōu)值。針對這一問題,文章在詳細分析迭代拉格朗日松弛方法和維特比算法原理的基礎上,提出了利用故障和測試結果之間的關系來估計拉格朗日乘子的非迭代動態(tài)多故障診斷方法。該方法避免了迭代過程,減少了計算時間并提高了診斷正確率。對航天器電源系統(tǒng)的診斷表明,非迭代動態(tài)多故障診斷方法的診斷速度快,且其正確率高于以前的算法。

     

    Abstract: Because the sensors have noises and, the failure discrimination rule is sometimes unreliable, the fault detection result of a machine is not always correct. A good fault diagnosis method should contain redundancy among different test points and instants to increase the fault isolation rate. The dynamic multiple fault diagnosis (DMFD) method is shown to have a good diagnostic performance in testing unreliable conditions. But when the system is large in scale, the iteration would be unnecessary, and it does not always reach the optimal value. In this paper, the principles of Lagrange relaxation and Viterbi algorithm are analyzed first, then a method is proposed to make use of the relationship between faults and test results to estimate the Lagrange multiplier. By leaving out the iteration process, the computation time is reduced and the real-time performance of the algorithm is enhanced. Simulation results show that the new algorithm gives much faster calculation speed with a higher fault isolation rate.

     

/

返回文章
返回